Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Adicionar filtros

Base de dados
Tópicos
Ano de publicação
Tipo de documento
Intervalo de ano
1.
Sci Rep ; 13(1): 9161, 2023 06 06.
Artigo em Inglês | MEDLINE | ID: covidwho-20245441

RESUMO

Proteases encoded by SARS-CoV-2 constitute a promising target for new therapies against COVID-19. SARS-CoV-2 main protease (Mpro, 3CLpro) and papain-like protease (PLpro) are responsible for viral polyprotein cleavage-a process crucial for viral survival and replication. Recently it was shown that 2-phenylbenzisoselenazol-3(2H)-one (ebselen), an organoselenium anti-inflammatory small-molecule drug, is a potent, covalent inhibitor of both the proteases and its potency was evaluated in enzymatic and antiviral assays. In this study, we screened a collection of 34 ebselen and ebselen diselenide derivatives for SARS-CoV-2 PLpro and Mpro inhibitors. Our studies revealed that ebselen derivatives are potent inhibitors of both the proteases. We identified three PLpro and four Mpro inhibitors superior to ebselen. Independently, ebselen was shown to inhibit the N7-methyltransferase activity of SARS-CoV-2 nsp14 protein involved in viral RNA cap modification. Hence, selected compounds were also evaluated as nsp14 inhibitors. In the second part of our work, we employed 11 ebselen analogues-bis(2-carbamoylaryl)phenyl diselenides-in biological assays to evaluate their anti-SARS-CoV-2 activity in Vero E6 cells. We present their antiviral and cytoprotective activity and also low cytotoxicity. Our work shows that ebselen, its derivatives, and diselenide analogues constitute a promising platform for development of new antivirals targeting the SARS-CoV-2 virus.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/metabolismo , Metiltransferases , Peptídeo Hidrolases , Antivirais/farmacologia , Antivirais/metabolismo , Cisteína Endopeptidases/metabolismo , Inibidores de Proteases/farmacologia , Simulação de Acoplamento Molecular
2.
Antiviral Res ; 193: 105142, 2021 09.
Artigo em Inglês | MEDLINE | ID: covidwho-1321985

RESUMO

SARS-CoV-2, the cause of the currently ongoing COVID-19 pandemic, encodes its own mRNA capping machinery. Insights into this capping system may provide new ideas for therapeutic interventions and drug discovery. In this work, we employ a previously developed Py-FLINT screening approach to study the inhibitory effects of compounds against the cap guanine N7-methyltransferase enzyme, which is involved in SARS-CoV-2 mRNA capping. We screened five commercially available libraries (7039 compounds in total) to identify 83 inhibitors with IC50 < 50 µM, which were further validated using RP HPLC and dot blot assays. Novel fluorescence anisotropy binding assays were developed to examine the targeted binding site. The inhibitor structures were analyzed for structure-activity relationships in order to define common structural patterns. Finally, the most potent inhibitors were tested for antiviral activity on SARS-CoV-2 in a cell based assay.


Assuntos
Antivirais/farmacologia , Tratamento Farmacológico da COVID-19 , Metiltransferases/antagonistas & inibidores , Nucleotidiltransferases/antagonistas & inibidores , SARS-CoV-2/efeitos dos fármacos , Antivirais/química , COVID-19/virologia , Linhagem Celular , Exorribonucleases/antagonistas & inibidores , Exorribonucleases/metabolismo , Ensaios de Triagem em Larga Escala , Humanos , Concentração Inibidora 50 , Metiltransferases/metabolismo , Nucleotidiltransferases/metabolismo , Capuzes de RNA , RNA Viral/genética , RNA Viral/metabolismo , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Proteínas não Estruturais Virais/antagonistas & inibidores , Proteínas não Estruturais Virais/metabolismo , Replicação Viral/efeitos dos fármacos
3.
Chembiochem ; 22(23): 3236-3253, 2021 12 02.
Artigo em Inglês | MEDLINE | ID: covidwho-1320063

RESUMO

In eukaryotes, mRNA is modified by the addition of the 7-methylguanosine (m7 G) 5' cap to protect mRNA from premature degradation, thereby enhancing translation and enabling differentiation between self (endogenous) and non-self RNAs (e. g., viral ones). Viruses often develop their own mRNA capping pathways to augment the expression of their proteins and escape host innate immune response. Insights into this capping system may provide new ideas for therapeutic interventions and facilitate drug discovery, e. g., against viruses that cause pandemic outbreaks, such as beta-coronaviruses SARS-CoV (2002), MARS-CoV (2012), and the most recent SARS-CoV-2. Thus, proper methods for the screening of large compound libraries are required to identify lead structures that could serve as a basis for rational antiviral drug design. This review summarizes the methods that allow the monitoring of the activity and inhibition of enzymes involved in mRNA capping.


Assuntos
Capuzes de RNA , RNA Mensageiro/genética , SARS-CoV-2/genética , COVID-19/virologia , Ensaios Enzimáticos , RNA Viral/genética
4.
Vaccines (Basel) ; 9(2)2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: covidwho-1059819

RESUMO

COVID-19 vaccinations are about to begin in various countries or are already ongoing. This is an unprecedented operation that is also met with a loud response from anti-vaccine communities-currently using all available channels to manipulate public opinion. At the same time, the strategy to educate on vaccinations, explain their mechanism of action, and build trust in science is subdued in different world parts. Such actions should go much beyond campaigns promoting the COVID-19 vaccines solely on the information provided by the health institutions and national authorities. In this paper, actions provided by independent expert groups needed to counteract the anti-vaccine propaganda and provide scientific-based information to the general public are offered. These actions encompass organizing groups continuously communicating science on COVID-19 vaccines to the general public; tracking and tackling emerging and circulating fake news; and equipping celebrities and politicians with scientific information to ensure the quality of messages they communicate, as well as public letters, and statements of support for vaccination by healthcare workers, recognized scientists, VIPs, and scientific societies; and no tolerance to false and manipulated claims on vaccination spread via traditional and social media as well as by health professionals, scientists, and academics. These activities should be promptly implemented worldwide, regardless of the current status and availability of the COVID-19 vaccine in a particular region. If we are about to control the pandemic for the sake of public benefit, it is high time to collectively speak out as academic and medical societies with support from decision-makers. Otherwise, the battle will be lost to those who stand against scientific evidence while offering no feasible solution to the problem.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA